DeepSpeedOptimWrapper¶
- class mmengine._strategy.deepspeed.DeepSpeedOptimWrapper(optimizer)[source]¶
- backward(loss, **kwargs)[source]¶
“Perform gradient back propagation.
- Parameters:
loss (Tensor)
- Return type:
None
- load_state_dict(state_dict)[source]¶
A wrapper of
Optimizer.load_state_dict. load the state dict ofoptimizer.Provide unified
load_state_dictinterface compatible with automatic mixed precision training. Subclass can overload this method to implement the required logic. For example, the state dictionary of GradScaler should be loaded when training withtorch.cuda.amp.- Parameters:
state_dict (dict) – The state dictionary of
optimizer.- Return type:
None